Plasmon-Enhanced Single-Molecule Enzymology
Yuyang Wang and Peter Zijlstra
We present a numerical study on plasmon-enhanced single-molecule enzymology. We combine Brownian dynamics and electromagnetic simulations to calculate the enhancement of fluorescence signals of fluorogenic substrate converted by an enzyme conjugated to a plasmonic particle. We simulate the Brownian motion of a fluorescent product away from the active site of the enzyme, and calculate the photon detection rate taking into account modifications of the excitation and emission processes by coupling to the plasmon. We show that plasmon enhancement can boost the signal-to-noise ratio (SNR) of single turnovers by up to 100 fold compared to confocal microscopy. This enhancement factor is a trade-off between the reduced residence time in the near-field of the particle, and the enhanced emission intensity due to coupling to the plasmon. The enhancement depends on the size, shape and material of the particle and the photophysical properties of the fluorescent product. Our study provides guidelines on how to enhance the SNR of single-molecule enzyme studies and may aid in further understanding and quantifying static and dynamic heterogeneity.
Related Articles
DOI link: https://aip.scitation.org/doi/10.1063/5.0055135 Michael A. Beuwer, Peter Zijlstra* Single metallic particles and dimers of nanospheres have been used extensively for sensing, but dimers of particles provide attractive advantages because they...
Peter will present the group’s most recent results at the Gordon Research Conference in Hong Kong on Plasmonically Powered Processes! For the conference’s full program see https://www.grc.org/plasmonically-powered-processes-conference/2019/.
All-Optical Imaging of Gold Nanoparticle Geometry Using Super-Resolution Microscopy Adam Taylor, Rene Verhoef, Michael Beuwer, Yuyang Wang, and Peter Zijlstra DOI: 10.1021/acs.jpcc.7b12473 We demonstrate the all-optical reconstruction of gold nanoparticle...